这道题自己写了很久,还是没写出来,也看了很多题解,感觉多数还是看的迷迷糊糊,最后面看到一篇大佬的才感觉恍然大悟。
先上一篇大佬的题解: (既简单又高效 代码还短!%%%)
先说下题意:
就是给你n个数,每个数的初始值都是为0
然后给你m个操作
每个操作有 4 个数 op x y c
当 op==1 的时候,把 x到y 范围内的数 都 加上 c
当 op==2 的时候,把 x到y 范围内的数 都 乘以 c
当 op==3 的时候,把 x到y 范围内的数 都 等于 c
当 op==4 的时候,把 x到y 范围内的 每一个数 的 c 次方的和 输出(注意,当op等于4的时候,c的范围为1~3)
下面说说思路:
关键就是在于这个 懒惰值的传递,和 区间的每一个值是否都相等的问题
一.先说说树的数据
这个大家参考下就可以,实现的方法有很多,不一定需要这么写,把这个先放上来是便于理解。(我这么写是因为我太菜了)
struct Data { ll l, r, val;//分别是左边界,右边界,懒惰值(也是该区间每一个叶节点的值) bool dif;//判断区间内每一个区间是否的相同 }tree[M << 2];
二.再说这个区间值都相等
我们可以知道,如果区间内的每一个值都相等,那么我们只要 求 其中一个的值的c次方,然后把该数乘以(右边界 减去 左边界 再加 1 ),便是该区间值的次方总和了
如果该区间的每一个值不相等,那么我们必须接着向下探索,直到 找到 一个 区间内的每一个值都相等 的区间,最坏的情况也就是找到叶节点。
三.懒惰值的传递
如果这个区间的每一个值都相等,那么它的左右子区间肯定也都是相等的。
如果这个区间不是全等区间,那么我们就没必要传递懒惰值,因为你这个区间每一个值不一定相等 ; 但是如果是全等区间,就要传递懒惰值。
如果我们在更新数据的过程中,需要用到传递懒惰值,那么肯定是要修改这个区间的某一个子区间,所以传递后,这个区间肯定不会再是全等区间
四.数据的更新
我们在更新完值后,肯定也需要更新区间是否相等的信息
有三种情况:
1.如果该区间的左右子区间 都不是 全等区间的话,那这个区间肯定也 不是 全等区间
2.如果该区间的左右子区间 都是 全等区间, 但是它们的 叶节点的值都 不相等,那么这个区间肯定 也不是 全等区间
3.如果该区间的左右区间 都是 全等区间,并且 它们的 叶节点的值都 全等,那么这个区间 肯定是 全等区间
下面上代码:
#include #include #include #include #include #include #include #include #include #include #include #include #include